

Apollo Scientific

Part Number: **PC53450** Version No: **1.2** Safety Data Sheet Chemwatch Hazard Alert Code: 2

Issue Date: **09/06/2023** Print Date: **09/06/2023** S.GHS.GB-NIR.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	Fluoro-3-iodonitrobenzene	
Chemical Name	LUORO-3-IODONITROBENZENE	
Synonyms	Not Available	
Other means of identification	Not Available	
CAS number	1261782-23-3*	

Relevant identified uses of the substance or mixture and uses advised against

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Apollo Scientific	Apollo Scientific Itd	
Address	Whitefield Road, Bredbury SK62QR United Kingdom	Whitefield Road Not Available SK6 2QR United Kingdom (NI)	
Telephone	01614060505	+44(0) 161 406 0505	
Fax	0161 406 0506	Not Available	
Website	http://www.apolloscientific.co.uk/	apolloscientific.co.uk	
Email	sales@apolloscientific.co.uk	sales@apolloscientific.co.uk	

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	Not Available
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

 Classification according to regulation (EC) No 1272/2008 [CLP] and amendments [1]
 H312 - Acute Toxicity (Dermal) Category 4, H332 - Acute Toxicity (Inhalation) Category 4, H335 - Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, H302 - Acute Toxicity (Oral) Category 4, H319 - Serious Eye Damage/Eye Irritation Category 2

 Legend:
 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)	
Signal word	Warning

Hazard statement(s)

H312	Harmful in contact with skin.	
H332	larmful if inhaled.	
H335	May cause respiratory irritation.	
H302	Harmful if swallowed.	
H319	Causes serious eye irritation.	

Precautionary statement(s) Prevention

P271	Use only outdoors or in a well-ventilated area.	
P261	P261 Avoid breathing dust/fumes.	
P264	Wash all exposed external body areas thoroughly after handling.	
P270	Do not eat, drink or smoke when using this product.	
P280	Wear protective gloves, protective clothing, eye protection and face protection.	

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
P337+P313	f eye irritation persists: Get medical advice/attention.		
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.		
P302+P352	IF ON SKIN: Wash with plenty of water.		
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.		
P330	Rinse mouth.		
P362+P364	Take off contaminated clothing and wash it before reuse.		

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

CAS No	%[weight]	Name	Classification according to regulation (EC) No 1272/2008 [CLP] and amendments	SCL / M-Factor
1261782-23-3*	100	2-Fluoro- 3-iodonitrobenzene	Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Acute Toxicity (Oral) Category 4, Serious Eye Damage/Eye Irritation Category 2; H312, H332, H335, H302, H319 ^[1]	Not Available

Legend: 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 3. Classification drawn from C&L; * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties

Mixtures

See section above for composition of Substances

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility	None known.

Advice for firefighters

Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 Non combustible. Not considered a significant fire risk, however containers may burn. May emit corrosive fumes.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing dust and contact with skin and eyes. Wear protective clothing, gloves, safety glasses and dust respirator. Use dry clean up procedures and avoid generating dust. Sweep up, shovel up or Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). Place spilled material in clean, dry, sealable, labelled container.
--------------	---

Major Spills	 Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise Emergency Services.
--------------	---

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry area protected from environmental extremes. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. For major quantities: Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Conditions for safe storage, including any incompatibilities

Suitable container	 Lined metal can, lined metal pail/ can. Plastic pail. Polyliner drum. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	None known Light sensitive

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3
2-Fluoro-3-iodonitrobenzene	Not Available	Not Available		Not Available
Ingredient	Original IDLH		Revised IDLH	
2-Fluoro-3-iodonitrobenzene	Not Available		Not Available	
Occupational Exposure Banding				
Ingredient	Occupational Exposure Band Rating		Occupational Exposure Band Limit	
2-Fluoro-3-iodonitrobenzene	E		≤ 0.01 mg/m³	

Notes:	Occupational exposure banding is a process of assigning chemica	als into specific categories or bands based on a chemical's	
	potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure		
	band (OEB), which corresponds to a range of exposure concentra	tions that are expected to protect worker health.	

Exposure co	ontrols
-------------	---------

extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metr distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.	•					
Appropriate engineering controls The basic types of engineering controls are: Process controls which involve changing the way job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation care mereove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. • Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual riction. • Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual riction. • If in spice of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Sub protection might consist of: (a): particle dust respirators; if necessary, combined with an absorption carridge; (b): filter respirators; if necessary, combined with an absorption carridge; (c): fresh-air hoods or masks. Ar contaminants generated in the workplace possase varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. (a): fresh-air hoods or masks. Air Speed: tirret spirators; spray painting in shallow boths, drum filling, conveyer loading, crusher dusts, gas direct spirators; with absorption councily in spiratod air motion). <td< th=""><th></th><th colspan="4">engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to</th></td<>		engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to				
Appropriate engineering Process controls which involve changing the way spice activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically" adds" and "removed" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively targe, a certain proportion will be powdered by mutual friction. Vicel exhaust ventilation system concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: (b): filter respirators with absorption cartridge: (c): filter respirators with absorption cartridge: (c): filter respirators with absorption cartridge: (c): filter carterial part pointing in shallow booths, drum filling, conveyer loading, crusher dusts, gas 1, 2, 5 m/s (200-500 theostare) or of the same and consistered direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas 1, 2, 5 m/s (200-500 thrmin.) Within each range the appropriate value depends on: Lor contaminant (are spray, spray painting						
Appropriate engineering controls Image: Contaminant: Image:			ivity or process is done to reduce the	risk		
Appropriate engineering controls Local exhaust venilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. In spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection night consist of: (a): particle dust respirators, if necessary, combined with an absorption cartridge; (b): filter respirators with absorption cartridge or canister of the right type: (c): fresh-air hoods or masks. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of the circulating air required to effectively remove the contaminant. Type of Contaminant: direct spray, spray painting in shallow booths, drum filing, conveyer loading, crusher dusts, gas 1-2.5 m/s (200-500 direct spray, spray painting in shallow booths, drum filing, conveyer loading, crusher dusts, gas 1-2.5 m/s (200-500 direct spray, spray painting in shallow booths, drum filing, conveyer loading, crusher dusts, gas 1-2.5 m/s (200-200 directarge (active generation into zone of rapid air motion) direct spray, spray painting in shallow booths, drum filing, conveyer loading, crusher dusts, gas 1-2.5 m/s (200-200 directarge (active generation into zone of rapid air motion) direct spray, spray painting in shallow booths, drum filing, conveyer loading, crusher dusts, gas 1-2.5 m/s (200-200 directarge are made in the output and air motion) direct spray spray painting in shallow booths, drum						
Appropriate engineering controls Type of Contaminant: in collar or any control will be powdered by mutual friction. * Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. * If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: (a): particle dust respirators; if necessary, combined with an absorption cartridge; (b): filter respirators with absorption cartridge or canister of the right type; (c): fresh-air hoods or masks. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Type of Contaminant: controls Type of Contaminant: in shallow booths, drum filling, conveyer loading, crusher dusts, gas (aicwarge (active generation into zone of rapid air motion). 12.5 m/s (200-500 (frmin.) Within each range the appropriate value depends on: Lower end of the range 1: Room air currents minimal or favourable to capture 4: Large hood or large air mass in motion. 2: Contaminants of logh toxicity 3: Intermittent, low production. 3: Itigh production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance area way from the centaminating source. The air velocity at the extraction point should be adjusted, accordingly, after reference to distance from the extraction point.		that strategically "adds" and "removes" air in the work envi	ronment. Ventilation can remove or di	lute an air contaminant if		
Appropriate engineering controls Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: (a): particle dust respirators, if necessary, combined with an absorption cartridge; (b): filter respirators with absorption cartridge or canister of the right type; (c): fresh-air hoods or masks. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Appropriate engineering controls Type of Contaminant: direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas 1.2.5 m/s (200-500 ffmin.) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial 2.5-10 m/s (500-200 ffmin.) Within each range the appropriate value depends on: Lower end of the range 1.2.6 m/s (200-500 ffmin.) 3. Intermittent, low production. 3. High production, heavy use 4. Large hood or large air mosion 2. Contaminants of low toxicity or of nuisance value only. 2. Contaminants of low toxicity and to supare of distance from the exinaction point. 3. Int				emical or contaminant in use.		
Appropriate engineering controls Image: a certain proportion will be powdered by mutual friction. * If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: (a): particle dust respirators, if necessary, combined with an absorption cartridge; (b): filter respirators with absorption cartridge or canister of the right type; (c): fresh-air hoods or masks. Appropriate engineering controls Type of Contaminant: generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh-circulating air required to effectively remove the contaminant. Type of Contaminant: Air Speed: direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas tirect spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas tirect spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas tirect spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas tirect spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas tirect spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas tirect spray, spray painting in shallow down booths, drum filling, conveyer loading, crusher dusts, gas tirect spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas tirect spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas tirect spray, spray painting in shallow to construct the spray of the range tirect spray, spray the spray of the range tirect spray, spray the the appropriate value depends on: Lower end of the rang		Employers may need to use multiple types of controls to p	revent employee overexposure.			
Appropriate engineering controls If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Appropriate engineering controls If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Appropriate engineering controls Air Speed: Type of Contaminant: Air Speed: Idirect spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas 1+2.5 m/s (200-500 t/min.) 1+2.5 m/s (200-500 t/min.) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial ischarge (active generation into zone of rapid air motion). 2.5-10 m/s (500-200 t/min.) Within each range the appropriate value depends on: Lower end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Lower and or large air mass in motion 4: Large hood or large air ass in motion 4: Large hood or large air mass in motion 4: Large hood or la				when particulates are relatively		
Such protection might consist of: (a): particle dust respirators, if necessary, combined with an absorption cartridge; (b): filter respirators with absorption cartridge or canister of the right type; (c): fresh-air hoods or masks. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh-air hoods or masks. Appropriate engineering controls Type of Contaminant: Air Speed: (ircet spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas 1-2.5 m/s (200-500 fr/min.) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of reyr high rapid air motion) 2.5-10 m/s (500-200 fr/min.) Within each range the appropriate value depends on: Lower end of the range Upper end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2. Contaminants of low toxicity or of nuisance value only. 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction of runsher dusts generated 2 metr distant from the extraction point. Other mechanical considerations, producing performance				iratory protection should be		
(a): particle dust respirators, if necessary, combined with an absorption cartridge; (b): filter respirators with absorption cartridge or canister of the right type; (c): fresh-air hoods or masks. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Appropriate engineering controls Type of Contaminant: Air Speed: direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas 1-2.5 m/s (200-500 discharge (active generation into zone of rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). 2.5-10 m/s (500-200 frmin). Within each range the appropriate value depends on: Lower end of the range 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be an inimum of 4-10 m/s (800-2000 frmin) for extraction or tuber dusts generated 2 metricus			<i>·</i> •			
(b): filter respirators with absorption cartridge or canister of the right type; (c): firsh-air hoods or masks. Appropriate engineering controls Type of Contaminants: generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Appropriate engineering controls Type of Contaminant: Air Speed: direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas 1-2.5 m/s (200-500 fmin).) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial 2.5-10 m/s (500-200 velocity into zone of very high rapid air motion). 2.5-10 m/s (500-200 Vimin).) Within each range the appropriate value depends on: Lower end of the range Upper end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point due at reperented 0 at the extraction point. Other mechanical considerations, producing performance deficits within the extraction and, for example, should be a minimum of 4-10						
(c): fresh-air hoods or masks. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Appropriate engineering controls Type of Contaminant: Air Speed: direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas 1-2.5 m/s (200-500 t/min.) grinding, abrasive blasting, turnbling, high speed wheel generated dusts (released at high initial 2.5-10 m/s (500-200 t/min.) 2.5-10 m/s (500-200 t/min.) Within each range the appropriate value depends on: Lower end of the range Upper end of the range 1. Room air currents minimal or favourable to capture 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (no simple cases). Therefore the air speed at the extraction fan, for example, should be a minimum of 4-10 m/s (600-2000 f/min) for extraction of crusher dusts generated 2 metric distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air						
Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Appropriate engineering controls Type of Contaminant: Air Speed: direct spray, spray painting in shallow booths, drum filling, conveyer leading, crusher dusts, gas 1-2.5 m/s (200-500 t/min.) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial 2.5-10 m/s (500-200 velocity into zone of very high rapid air motion). 2.5-10 m/s (500-200 t/min.) Within each range the appropriate value depends on: Lower end of the range Upper end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants or pipe. Velocity at the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminanting source. The air velocity at the extraction point (in simple cases). Therefore the air speed at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of rusher dusts generated 2 metricities are multiplied by factors of 10 or more when extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction apparatus, make it essential that theoretical air velocities are			f the right type;			
Appropriate engineering controls Air Speed: Type of Contaminant: Air Speed: direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas 1-2.5 m/s (200-500 f/min.) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). 2.5-10 m/s (500-200 f/min.) Within each range the appropriate value depends on: Lower end of the range Upper end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2.5-10 m/s (500-200 f/min.) 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generated 2 metration point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction point the outsind of crusher dusts generated 2 metration and, for example, should be ad minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metration apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.						
controls direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas 1.2.5 m/s (200-500 l/min.) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). 2.5-10 m/s (500-200 l/min.) Within each range the appropriate value depends on: Lower end of the range Upper end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2. Contaminants of low toxicity or of nuisance value only. 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.						
direct spray, spray painting in shallow bootns, drum milling, conveyer loading, crusher dusts, gas 1-2.5 m/s (200-300 f/min.) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). 2.5-10 m/s (500-200 f/min.) Within each range the appropriate value depends on: 1.2.6 m/s (200-300 f/min.) 1.1.0 m/s (500-200 f/min.) Lower end of the range Upper end of the range 1.2.6 m/s (200-300 f/min.) 1: Room air currents minimal or favourable to capture 1.1.0 isturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.		Type of Contaminant:		Air Speed:		
velocity into zone of very high rapid air motion). f/min.) Within each range the appropriate value depends on: Lower end of the range Upper end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.	controls					
Lower end of the range Upper end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metric distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.						
1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metric distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.		Within each range the appropriate value depends on:				
2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metrr distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.		Lower end of the range	Upper end of the range			
3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metric distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.		1: Room air currents minimal or favourable to capture	1: Disturbing room air currents			
4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metrr distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.		2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity			
Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metrr distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.		3: Intermittent, low production.	3: High production, heavy use			
generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metric distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.		4: Large hood or large air mass in motion	4: Small hood-local control only			
generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metrr distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.						
extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metric distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.						
extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metric distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.		extraction point (in simple cases). Therefore the air speed at the extraction point (in simple cases). Therefore the air speed at the				
apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.		extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres				
installed or used.						
			are multiplied by factors of 10 or more	when extraction systems are		
Individual protection		Installed or used.				
	Individual protection					

Individual protection measures, such as personal protective equipment

Eye and face protection

Safety glasses with side shields.

Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience.

	Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]
Skin protection	See Hand protection below
Hands/feet protection	The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: • requency and duration of contact. • chemical resistance of glove material, glove thickness and • doxterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). • When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 200 minutes according to EN 374, AS/NZS 2161.1.0.1 or national equivalent) is recommended. • When only blief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.1.0.1 or national equivalent) is recommended. • When only blief contact is expected, a glove with a protection class of 3 or higher (breakthrough time second to the sequend) is recommended. • Some glove optimer types are less affected by movement and this should be taken into account when considering gloves for lon-qt-mm use. • Sociellon when breakthrough time > 20 min • Goot when breakthrough time > 20 min • Fair when breakthrough time > 20 min • Fair when breakthrough time > 20 min • Fair when breakthrough time > 20 min • For when glove material degrades • For general applications,
Body protection	See Other protection below
Other protection	 Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Respiratory protection

Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	P1 Air-line*	-	PAPR-P1 -
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-

		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

· Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

• The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).

• Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.

Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.

• Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)

· Use approved positive flow mask if significant quantities of dust becomes airborne.

 \cdot Try to avoid creating dust conditions.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Not Available		
Physical state	Solid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Available	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	Product is considered stable and hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7

Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Inhaled	The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
Ingestion	The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence.
Skin Contact	The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
Eye	This material can cause eye irritation and damage in some persons.
Chronic	Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	*	STOT - Single Exposure	*
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×
Legend: \times – Data either not available or does not fill the criteria for classification			

Data available to make classification

SECTION 12 Ecological information

Toxicity

Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity
	4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) -
	Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air	
	No Data available for all ingredients	No Data available for all ingredients	

Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal	 Recycle wherever possible or consult manufacturer for recycling options. Consult State Land Waste Management Authority for disposal. Bury residue in an authorised landfill. Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required	
Marine Pollutant	NO

Land transport (ADR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Inland waterways transport (ADN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
2-Fluoro-3-iodonitrobenzene	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type
2-Fluoro-3-iodonitrobenzene	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

2-Fluoro-3-iodonitrobenzene is found on the following regulatory lists

Not Applicable

National Inventory Status

National Inventory	Status	
Australia - AIIC / Australia Non-Industrial Use	No (2-Fluoro-3-iodonitrobenzene)	
Canada - DSL	No (2-Fluoro-3-iodonitrobenzene)	
Canada - NDSL	No (2-Fluoro-3-iodonitrobenzene)	
China - IECSC	No (2-Fluoro-3-iodonitrobenzene)	
Europe - EINEC / ELINCS / NLP	No (2-Fluoro-3-iodonitrobenzene)	
Japan - ENCS	No (2-Fluoro-3-iodonitrobenzene)	
Korea - KECI	No (2-Fluoro-3-iodonitrobenzene)	
New Zealand - NZIoC	No (2-Fluoro-3-iodonitrobenzene)	
Philippines - PICCS	No (2-Fluoro-3-iodonitrobenzene)	
USA - TSCA	No (2-Fluoro-3-iodonitrobenzene)	
Taiwan - TCSI	No (2-Fluoro-3-iodonitrobenzene)	
Mexico - INSQ	No (2-Fluoro-3-iodonitrobenzene)	
Vietnam - NCI	No (2-Fluoro-3-iodonitrobenzene)	
Russia - FBEPH	No (2-Fluoro-3-iodonitrobenzene)	

National Inventory	Status		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.		

SECTION 16 Other information

Revision Date	09/06/2023
Initial Date	10/06/2023

SDS Version Summary

Version	Date of Update	Sections Updated
0.2	09/06/2023	Hazards identification - Classification, Composition / information on ingredients - Ingredients, Identification of the substance / mixture and of the company / undertaking - Supplier Information, Identification of the substance / mixture and of the company / undertaking - Synonyms

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

PC - TWA: Permissible Concentration-Time Weighted Average

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC - STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals **DSL: Domestic Substances List** NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Classification according to regulation (EC) No 1272/2008 [CLP] and amendments	Classification Procedure	
Acute Toxicity (Dermal) Category 4, H312	Expert judgement	
Acute Toxicity (Inhalation) Category 4, H332	Expert judgement	
Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, H335	Expert judgement	
Acute Toxicity (Oral) Category 4, H302	Expert judgement	
Serious Eye Damage/Eye Irritation Category 2, H319	Expert judgement	

Powered by AuthorITe, from Chemwatch.