3-Bromo-2-fluorobenzotrifluoride

Apollo Scientific

Part Number: PC1421M
Version No: 1.2
Issue Date: 09/06/2023
Version No. 1.2
Print Date: 09/06/2023
Safety Data Sheet

SECTION 1 Identification of the substance / mixture and of the company / undertaking
Product Identifier

Product name	3-Bromo-2-fluorobenzotrifluoride
Chemical Name	3-Bromo-2-?uorobenzotri?uoride
Synonyms	Not Available
Other means of identification	Not Available
CAS number	$144584-67-8^{*}$

Relevant identified uses of the substance or mixture and uses advised against
Relevant identified uses Not Available

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Apollo Scientific	Apollo Scientific Itd
Address	Whitefield Road, Bredbury SK62QR United Kingdom	Whitefield Road Not Available SK6 2QR United Kingdom (NI)
Telephone	01614060505	$+44(0) 1614060505$
Fax	01614060506	Not Available
Website	$\underline{\text { http://www.apolloscientific.co.uk/ }}$	apolloscientific.co.uk
Email	sales@apolloscientific.co.uk	sales@apolloscientific.co.uk

Emergency telephone number

Association / Organisation	Not Available		
Emergency telephone			
numbers		Not Available \quad	Other emergency
---:			
telephone numbers	Not Available \quad		
:---			

SECTION 2 Hazards identification

Classification of the substance or mixture

Classification according to regulation (EC) No 1272/2008 [CLP] and amendments ${ }^{[1]}$

> H335 - Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, H319-Serious Eye Damage/Eye Irritation Category 2

Label elements

Hazard pictogram(s)	
Signal word	Warning

Hazard statement(s)

H335	May cause respiratory irritation.
H319	Causes serious eye irritation.

Precautionary statement(s) Prevention

| | P271 |
| :--- | :--- | Use only outdoors or in a well-ventilated area..\(~\left[\begin{array}{ll}\hline P261 \& Avoid breathing mist/vapours/spray.

\hline P280 \& Wear protective gloves, protective clothing, eye protection and face protection.

\hline P264 \& Wash all exposed external body areas thoroughly after handling.

\hline\end{array}\right.\)

Precautionary statement(s) Response

$\mathbf{P 3 0 5 + P 3 5 1 + P 3 3 8}$	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
$\mathbf{P 3 1 2}$	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.
$\mathbf{P 3 3 7 + P 3 1 3}$	If eye irritation persists: Get medical advice/attention.
$\mathbf{P 3 0 4 +} \mathbf{P 3 4 0}$	IF INHALED: Remove person to fresh air and keep comfortable for breathing.

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients
Substances

CAS No	\%[weight]	Name	Classification according to regulation (EC) No 1272/2008 [CLP] and amendments	SCL / M-Factor
144584-67-8*	100	3-Bromo- 2-fluorobenzotrifluoride	Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3 , Serious Eye Damage/Eye Irritation Category 2; H335, H319 [1]	Not Available

Legend: 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008-Annex VI; 3. Classification drawn from C\&L; *EU IOELVs available; [e] Substance identified as having endocrine disrupting properties

Mixtures

See section above for composition of Substances

SECTION 4 First aid measures

Description of first aid measures

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.

Eye Contact

- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact	If skin or hair contact occurs: - Flush skin and hair with running water (and soap if available). - Seek medical attention in event of irritation.
Inhalation	- If fumes, aerosols or combustion products are inhaled remove from contaminated area. - Other measures are usually unnecessary.
Ingestion	- Immediately give a glass of water. - First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed
Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility	None known.

Advice for firefighters

Fire Fighting	- Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	- Non combustible. - Not considered a significant fire risk, however containers may burn. May emit corrosive fumes.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	- Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. - Contain and absorb spill with sand, earth, inert material or vermiculite. - Wipe up. - Place in a suitable, labelled container for waste disposal.
Major Spills	Moderate hazard. - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - Stop leak if safe to do so. - Contain spill with sand, earth or vermiculite. - Collect recoverable product into labelled containers for recycling. - Neutralise/decontaminate residue (see Section 13 for specific agent). - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains.

[^0]- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling	- Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Avoid contact with moisture. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	

Conditions for safe storage, including any incompatibilities

Suitable container	* Polyethylene or polypropylene container. * Packing as recommended by manufacturer. * Check all containers are clearly labelled and free from leaks.
Storage incompatibility	None known \& Light sensitive

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Emergency Limits Ingredient	TEEL-1	TEEL-2		
3-Bromo- 2-fluorobenzotrifluoride	Not Available	Not Available		TEEL-3
	Original IDLH		Not Available	
Ingredient	Not Available	Revised IDLH		
3-Bromo- 2-fluorobenzotrifluoride		Not Available		

Occupational Exposure Banding

| Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit |
| :--- | :--- | :--- | :--- |
| 3-Bromo-
 2-fluorobenzotrifluoride | E | $\leq 0.1 \mathrm{ppm}$ |
| Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's
 potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure
 band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | |

Exposure controls

Appropriate engineering
controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

Process controls which involve changing the way a job activity or process is done to reduce the risk.
Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	$0.25-0.5 \mathrm{~m} / \mathrm{s}$ $(50-100 \mathrm{f} / \mathrm{min})$
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	$0.5-1 \mathrm{~m} / \mathrm{s}(100-200$ $\mathrm{f} / \mathrm{min})$.
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	$1-2.5 \mathrm{~m} / \mathrm{s}(200-500$ $\mathrm{f} / \mathrm{min})$.
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	$2.5-10 \mathrm{~m} / \mathrm{s}$ $(500-2000 \mathrm{f} / \mathrm{min})$.

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 $\mathrm{m} / \mathrm{s}(200-400 \mathrm{f} / \mathrm{min})$ for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

See Hand protection below

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.
Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
frequency and duration of contact,

- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time
greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
Contaminated gloves should be replaced.
As defined in ASTM F-739-96 in any application, gloves are rated as:
Excellent when breakthrough time > 480 min
Good when breakthrough time $>20 \mathrm{~min}$
Fair when breakthrough time < 20 min
Poor when glove material degrades
For general applications, gloves with a thickness typically greater than 0.35 mm , are recommended.
It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.
Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

See Other protection below

-Overalls.

- P.V.C apron.

Other protection

- Barrier cream.

Skin cleansing cream.

- Eye wash unit.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Not Available		
Physical state	Liquid	Relative density (Water =	1.72
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	Not Available
pH (as supplied)	Not Available	Decomposition temperature (${ }^{\circ} \mathrm{C}$)	Not Available
Melting point / freezing point (${ }^{\circ} \mathrm{C}$)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (${ }^{\circ} \mathrm{C}$)	Not Available	Molecular weight ($\mathrm{g} / \mathrm{mol}$)	Not Available
Flash point (${ }^{\circ} \mathrm{C}$)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (\%)	Not Available	Surface Tension (dyn/cm or mN / m)	Not Available
Lower Explosive Limit (\%)	Not Available	Volatile Component (\%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Available	pH as a solution (1\%)	Not Available

| Vapour density (Air $=\mathbf{1})$ | Not Available | VOC g/L |
| :--- | :--- | :--- | Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	- Unstable in the presence of incompatible materials. - Product is considered stable. - Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
Ingestion	The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence.
Skin Contact	The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
Eye	This material can cause eye irritation and damage in some persons.
Chronic	Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.

Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Acute Toxicity	X	Carcinogenicity	x
Skin Irritation/Corrosion	\times	Reproductivity	\times
Serious Eye Damage/Irritation	\checkmark	STOT - Single Exposure	\checkmark
Respiratory or Skin sensitisation	X	STOT - Repeated Exposure	\times
Mutagenicity	X	Aspiration Hazard	\times

SECTION 12 Ecological information

Toxicity

Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity
	4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) -
	Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Ingredient	Persistence: Water/Soil	Persistence: Air
3-Bromo- 2-fluorobenzotrifluoride	HIGH	HIGH
	Bioaccumulation	
Bioaccumulative potential		
Ingredient	MEDIUM (LogKOW $=4.0464$)	
3-Bromo- 2-fluorobenzotrifluoride		

Mobility in soil

Ingredient	Mobility
3-Bromo- 2-fluorobenzotrifluoride	LOW $($ KOC $=3228)$

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal	Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material). - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant NO

Land transport (ADR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS
Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS
Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS
Inland waterways transport (ADN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS
Transport in bulk according to Annex II of MARPOL and the IBC code
Not Applicable
Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
3-Bromo- 2-fluorobenzotrifluoride	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type
3-Bromo- 2-fluorobenzotrifluoride	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture
3-Bromo-2-fluorobenzotrifluoride is found on the following regulatory lists
Not Applicable

National Inventory Status

National Inventory	Status
Australia - AlIC / Australia Non-Industrial Use	No (3-Bromo-2-fluorobenzotrifluoride)
Canada - DSL	No (3-Bromo-2-fluorobenzotrifluoride)
Canada - NDSL	No (3-Bromo-2-fluorobenzotrifluoride)
China - IECSC	No (3-Bromo-2-fluorobenzotrifluoride)
Europe - EINEC / ELINCS / NLP	No (3-Bromo-2-fluorobenzotrifluoride)
Japan - ENCS	No (3-Bromo-2-fluorobenzotrifluoride)
Korea - KECI	No (3-Bromo-2-fluorobenzotrifluoride)
New Zealand - NZloC	No (3-Bromo-2-fluorobenzotrifluoride)
Philippines - PICCS	No (3-Bromo-2-fluorobenzotrifluoride)
USA - TSCA	No (3-Bromo-2-fluorobenzotrifluoride)
Taiwan - TCSI	Yes
Mexico - INSQ	No (3-Bromo-2-fluorobenzotrifluoride)
Vietnam - NCI	No (3-Bromo-2-fluorobenzotrifluoride)
Russia - FBEPH	No (3-Bromo-2-fluorobenzotrifluoride)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	09/06/2023
Initial Date	10/06/2023

SDS Version Summary

Version	Date of Update	Sections Updated
0.2	$09 / 06 / 2023$	Physical and chemical properties - Appearance, Hazards identification - Classification, Composition / information on ingredients - Ingredients, Identification of the substance / mixture and of the company / undertaking - Supplier Information, Identification of the substance / mixture and of the company / undertaking - Synonyms

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.
For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:
EN 166 Personal eye-protection
EN 340 Protective clothing
EN 374 Protective gloves against chemicals and micro-organisms
EN 13832 Footwear protecting against chemicals
EN 133 Respiratory protective devices

Definitions and abbreviations

PC - TWA: Permissible Concentration-Time Weighted Average
PC - STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit.
IDLH: Immediately Dangerous to Life or Health Concentrations
ES: Exposure Standard
OSF: Odour Safety Factor
NOAEL :No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index
AIIC: Australian Inventory of Industrial Chemicals
DSL: Domestic Substances List
NDSL: Non-Domestic Substances List
IECSC: Inventory of Existing Chemical Substance in China
EINECS: European INventory of Existing Commercial chemical Substances
ELINCS: European List of Notified Chemical Substances
NLP: No-Longer Polymers
ENCS: Existing and New Chemical Substances Inventory
KECI: Korea Existing Chemicals Inventory
NZloC: New Zealand Inventory of Chemicals
PICCS: Philippine Inventory of Chemicals and Chemical Substances
TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory
INSQ: Inventario Nacional de Sustancias Químicas
NCI: National Chemical Inventory
FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Classification and procedure used to derive the classification for mixtures according to Regulation (EC) 1272/2008 [CLP]
Classification according to
regulation (EC) No 1272/2008 [CLP] and Classification Procedure amendments
Specific Target Organ
Toxicity - Single Exposure
(Respiratory Tract Irritation)
Expert judgement
Category 3, H335
Serious Eye Damage/Eye
Irritation Category 2, H319
Expert judgement

Powered by AuthorlTe, from Chemwatch.

[^0]: - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.

