2,3-Diphenylquinoxaline Apollo Scientific

Part Number: OR40388
Version No: 2.2
Issue Date: 28/06/2023
Print Date: 28/06/2023
Safety Data Sheet

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	2,3-Diphenylquinoxaline
Chemical Name	2,3-diphenylquinoxaline
Synonyms	Not Available
Chemical formula	C20-H14-N2
Other means of identification	Not Available
CAS number	$1684-14-6^{\star}$

Relevant identified uses of the substance or mixture and uses advised against
Relevant identified uses Not Available

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Apollo Scientific	Apollo Scientific Itd
Address	Whitefield Road, Bredbury SK62QR United Kingdom	Whitefield Road, Bredbury SK6 2QR United Kingdom (NI)
Telephone	01614060505	$+44(0) 1614060505$
Fax	01614060506	Not Available
Website	http://www.apolloscientific.co.uk/	apolloscientific.co.uk
Email	sales@apolloscientific.co.uk	sales@apolloscientific.co.uk

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone	Not Available
Other emergency numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

Classification according to regulation (EC) No 1272/2008 [CLP] and amendments ${ }^{[1]}$

H335-Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, H302-Acute Toxicity (Oral) Category 4, H315 - Skin Corrosion/Irritation Category 2, H319-Serious Eye Damage/Eye Irritation Category 2, H410Hazardous to the Aquatic Environment Long-Term Hazard Category 1

1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)	Warning

Hazard statement(s)

H335	May cause respiratory irritation.
H302	Harmful if swallowed.
H315	Causes skin irritation.
H319	Causes serious eye irritation.
H410	Very toxic to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P271	Use only outdoors or in a well-ventilated area.
P261	Avoid breathing dust/fumes.
P264	Wash all exposed external body areas thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P280	Wear protective gloves, protective clothing, eye protection and face protection.

Precautionary statement(s) Response

$\mathbf{P 3 0 5 + P 3 5 1 + P 3 3 8}$	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
$\mathbf{P 3 3 7 + P 3 1 3}$	If eye irritation persists: Get medical advice/attention.
$\mathbf{P 3 9 1}$	Collect spillage.
$\mathbf{P 3 0 1 + P 3 1 2}$	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.
$\mathbf{P 3 0 2 + P 3 5 2}$	IF ON SKIN: Wash with plenty of water.
$\mathbf{P 3 0 4 + P 3 4 0}$	IF INHALED: Remove person to fresh air and keep comfortable for breathing.
$\mathbf{P 3 3 0}$	Rinse mouth.
$\mathbf{P 3 3 2 + P 3 1 3}$	If skin irritation occurs: Get medical advice/attention.
$\mathbf{P 3 6 2 + P 3 6 4}$	Take off contaminated clothing and wash it before reuse.
Precautionary statement(s) Storage	
$\mathbf{P 4 0 5}$	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

CAS No	\%[weight]	Name	Classification according to regulation (EC) No 1272/2008 [CLP] and amendments	SCL / M-Factor
1684-14-6*	100	2,3-Diphenylquinoxaline	Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3 , Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 1; H335, H302, H315, H319, H410 [1]	Not Available

Legend: 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008-Annex VI; 3. Classification drawn from C\&L; *EU IOELVs available; [e] Substance identified as having endocrine disrupting properties

Mixtures

See section above for composition of Substances

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: - Wash out immediately with fresh running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Seek medical attention without delay; if pain persists or recurs seek medical attention. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: - Flush skin and hair with running water (and soap if available). - Seek medical attention in event of irritation.
Inhalation	- If fumes, aerosols or combustion products are inhaled remove from contaminated area. - Other measures are usually unnecessary.

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- For advice, contact a Poisons Information Centre or a doctor.
- Urgent hospital treatment is likely to be needed.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS.

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
NOTE: Wear a protective glove when inducing vomiting by mechanical means.

Indication of any immediate medical attention and special treatment needed

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination).
For poisons (where specific treatment regime is absent):

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to $15 \mathrm{~L} / \mathrm{min}$.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water ($5 \mathrm{ml} / \mathrm{kg}$ recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.
EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 Firefighting measures

Extinguishing media

* There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area

Special hazards arising from the substrate or mixture

Fire Incompatibility None known.

Advice for firefighters

Fire Fighting	- Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	- Non combustible. - Not considered a significant fire risk, however containers may burn. May emit poisonous fumes. May emit corrosive fumes.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	- Remove all ignition sources. - Clean up all spills immediately. - Avoid contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. - Use dry clean up procedures and avoid generating dust. - Place in a suitable, labelled container for waste disposal. Environmental hazard - contain spillage.
Major Spills	Environmental hazard - contain spillage. Moderate hazard. - CAUTION: Advise personnel in area. - Alert Emergency Services and tell them location and nature of hazard. - Control personal contact by wearing protective clothing. - Prevent, by any means available, spillage from entering drains or water courses. - Recover product wherever possible. - IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. - ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. - If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

- Avoid all personal contact, including inhalation.

Safe handling
Wear protective clothing when risk of exposure occurs.

- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
* Avoid contact with incompatible materials.

When handling, DO NOT eat, drink or smoke.

* Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.

Work clothes should be laundered separately. Launder contaminated clothing before re-use.

- Use good occupational work practice
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Store in original containers
- Keep containers securely sealed
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers
* Protect containers against physical damage and check regularly for leaks.

Other information

- Observe manufacturer's storage and handling recommendations contained within this SDS.

For major quantities:

- Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams\}.
- Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Conditions for safe storage, including any incompatibilities

Suitable container	+ Polyethylene or polypropylene container. ' Check all containers are clearly labelled and free from leaks.
Storage incompatibility	None known

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)
INGREDIENT DATA
Not Available
Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3
2,3-Diphenylquinoxaline	Not Available	Not Available		Not Available
			Revised IDLH	
Ingredient	Original IDLH		Not Available	
2,3-Diphenylquinoxaline	Not Available			

Occupational Exposure Banding

| Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit |
| :--- | :--- | :--- | :--- |
| 2,3-Diphenylquinoxaline | E | $\leq 0.01 \mathrm{mg} / \mathrm{m}^{3}$ |
| Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's
 potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure
 band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | |

Exposure controls

Appropriate engineering
controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.
The basic types of engineering controls are:
Process controls which involve changing the way a job activity or process is done to reduce the risk.
Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively
large, a certain proportion will be powdered by mutual friction.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.
Such protection might consist of:
(a): particle dust respirators, if necessary, combined with an absorption cartridge;
(b): filter respirators with absorption cartridge or canister of the right type;
(c): fresh-air hoods or masks

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	$1-2.5 \mathrm{~m} / \mathrm{s}(200-500$ $\mathrm{f} / \mathrm{min})$.
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	$2.5-10 \mathrm{~m} / \mathrm{s}(500-2000$ $\mathrm{f} / \mathrm{min})$.

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of $4-10 \mathrm{~m} / \mathrm{s}(800-2000 \mathrm{f} / \mathrm{min})$ for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eye and face protection

Skin protection

Hands/feet protection

- Safety glasses with side shields.
- Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

See Hand protection below

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.
Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
chemical resistance of glove material,
glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374 , AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:
Excellent when breakthrough time >480 min

	- Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm , are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. ' polychloroprene. - nitrile rubber. - butyl rubber. - fluorocaoutchouc. - polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly.
Body protection	See Other protection below
Other protection	- Overalls. - P.V.C apron. - Barrier cream. - Skin cleansing cream. - Eye wash unit.

Respiratory protection

Type -P Filter of sufficient capacity. (AS/NZS 1716 \& 1715, EN 143:2000 \& 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to $10 \times$ ES	P1	Air-line ${ }^{\star}$	-
up to $50 \times$ ES	Air-line ${ }^{\star \star}$	-	PAPR-P1
up to $100 \times$ ES	-	P2	PAPR-P2
		P3	-
$100+$ Air-line ES	Air-line ${ }^{\star \star}$	-	

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide $(H C N), B 3=$ Acid gas or hydrogen cyanide $(H C N), E=S u l f u r$ dioxide(SO2), $\mathrm{G}=$ Agricultural chemicals, $\mathrm{K}=$ Ammonia(NH 3), $\mathrm{Hg}=$ Mercury, $\mathrm{NO}=$ Oxides of nitrogen, $\mathrm{MB}=$ Methyl bromide, $\mathrm{AX}=$ Low boiling point organic compounds(below 65 degC)

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
-Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- Use approved positive flow mask if significant quantities of dust becomes airborne.

Try to avoid creating dust conditions.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance Not Available

Physical state	Solid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (${ }^{\circ} \mathrm{C}$)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (${ }^{\circ} \mathrm{C}$)	Not Available
Melting point / freezing point $\left({ }^{\circ} \mathrm{C}\right)$	124-128	Viscosity (cSt)	Not Available
Initial boiling point and boiling range $\left({ }^{\circ} \mathrm{C}\right)$	Not Available	Molecular weight (g/mol)	Not Available
Flash point (${ }^{\circ} \mathrm{C}$)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (\%)	Not Available	Surface Tension (dyn/cm or mN / m)	Not Applicable
Lower Explosive Limit (\%)	Not Available	Volatile Component (\%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Available	pH as a solution (1\%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	* Unstable in the presence of incompatible materials. Product is considered stable. 'Hazardous polymerisation will not occur.
Possibility of hazardous	
reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

\qquad Inhaled	The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
\qquad Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
Skin Contact	Skin contact is not thought to produce harmful health effects (as classified under EC Directives using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Eye	This material can cause eye irritation and damage in some persons.

Chronic	Long-term exposure to the product is not thought to produce chronic effects adver using animal models); nevertheless exposure by all routes should be minimised	se to the health (as classified by EC Directives a matter of course.
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Unless otherwise specified data extracted from RTECS - Register of Toxic Effec	alue obtained from manufacturer's SDS. of chemical Substances
Acute Toxicity	\checkmark Carcinogenicity	X
Skin Irritation/Corrosion	\checkmark Reproductivity	\times
Serious Eye Damage/Irritation	\checkmark STOT - Single Exposure	\checkmark
Respiratory or Skin sensitisation	\times STOT - Repeated Exposure	X
Mutagenicity	\times Aspiration Hazard	X
Legend: $\quad \begin{aligned} & \text { - Data either not available or does not fill the criteria for classification } \\ & \\ & \checkmark-\text { Data available to make classification }\end{aligned}$		

SECTION 12 Ecological information

Toxicity

| \qquad Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity
 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) -
 Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data |
| :--- | :--- | | Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. |
| :--- |
| Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning
 equipment or disposing of equipment wash-waters.
 Wastes resulting from use of the product must be disposed of on site or at approved waste sites.
 DO NOT discharge into sewer or waterways. |
| Persistence and degradability |
| Ingredient Persistence: Water/Soil Persistence: Air |
| 2,3-Diphenylquinoxaline |

Bioaccumulative potential

Ingredient	Bioaccumulation
2,3-Diphenylquinoxaline	HIGH (LogKOW = 4.6442)

Mobility in soil

Ingredient	
Mobility	
2,3-Diphenylquinoxaline	LOW $(K O C=290100)$

SECTION 13 Disposal considerations

Waste treatment methods

	* Containers may still present a chemical hazard/ danger when empty. * - Return to supplier for reuse/ recycling if possible.
Otherwise:	

SECTION 14 Transport information

Labels Required

Marine Pollutant

Land transport (ADR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS
Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Inland waterways transport (ADN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code
Not Applicable
Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
2,3-Diphenylquinoxaline	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type
2,3-Diphenylquinoxaline	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture
2,3-Diphenylquinoxaline is found on the following regulatory lists
Europe EC Inventory
European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	No (2,3-Diphenylquinoxaline)
Canada - DSL	No (2,3-Diphenylquinoxaline)
Canada - NDSL	No (2,3-Diphenylquinoxaline)
China - IECSC	No (2,3-Diphenylquinoxaline)
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (2,3-Diphenylquinoxaline)
Korea - KECI	No (2,3-Diphenylquinoxaline)
New Zealand - NZloC	No (2,3-Diphenylquinoxaline)
Philippines - PICCS	No (2,3-Diphenylquinoxaline)
USA - TSCA	No (2,3-Diphenylquinoxaline)
Taiwan - TCSI	Yes
Mexico - INSQ	No (2,3-Diphenylquinoxaline)
Vietnam - NCI (2,3-Diphenylquinoxaline)	
Russia - FBEPH	No (2,3-Diphenylquinoxaline)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	$28 / 06 / 2023$
Initial Date	$28 / 06 / 2023$

SDS Version Summary

Version		Date of Update
Sections Updated		
		Toxicological information - Acute Health (inhaled), Toxicological information - Acute Health (skin), Toxicological information - Acute Health (swallowed), First Aid measures - Advice to Doctor, Physical and chemical properties - Appearance, CAS Number, Hazards identification - Classification, Disposal considerations - Disposal, Ecological Information - Environmental, Firefighting measures - Fire Fighter (fire/explosion hazard), First Aid measures - First Aid (swallowed), Composition / information on ingredients - Ingredients, Stability and reactivity - Instability Condition, Accidental release measures - Spills (major), Accidental release measures - Spills (minor), Handling and storage - Storage (suitable container), Identification of the substance / mixture and of the company / undertaking - Supplier Information, Identification of the substance / mixture and of the company / undertaking - Synonyms

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.
For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:
EN 166 Personal eye-protection
EN 340 Protective clothing
EN 374 Protective gloves against chemicals and micro-organisms
EN 13832 Footwear protecting against chemicals
EN 133 Respiratory protective devices

Definitions and abbreviations

PC - TWA: Permissible Concentration-Time Weighted Average
PC - STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit.
IDLH: Immediately Dangerous to Life or Health Concentrations
ES: Exposure Standard
OSF: Odour Safety Factor
NOAEL : No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index
AIIC: Australian Inventory of Industrial Chemicals
DSL: Domestic Substances List
NDSL: Non-Domestic Substances List
IECSC: Inventory of Existing Chemical Substance in China
EINECS: European INventory of Existing Commercial chemical Substances
ELINCS: European List of Notified Chemical Substances
NLP: No-Longer Polymers
ENCS: Existing and New Chemical Substances Inventory
KECI: Korea Existing Chemicals Inventory
NZloC: New Zealand Inventory of Chemicals
PICCS: Philippine Inventory of Chemicals and Chemical Substances
TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory
INSQ: Inventario Nacional de Sustancias Químicas
NCI: National Chemical Inventory
FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Classification according to regulation (EC) No $\mathbf{1 2 7 2 / 2 0 0 8}$ [CLP] and amendments	Classification Procedure
Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, H335	Expert judgement
Acute Toxicity (Oral) Category 4, H302	On basis of test data
Skin Corrosion/lrritation Category 2, H315	Expert judgement
Serious Eye Damage/Eye Irritation Category 2, H319	Expert judgement
Hazardous to the Aquatic Environment Long-Term Hazard Category 1, H410	Calculation method

Powered by AuthorlTe, from Chemwatch.

